ensemble_stacking.py 文件源码

python
阅读 33 收藏 0 点赞 0 评论 0

项目:HousePricePredictionKaggle 作者: Nuwantha 项目源码 文件源码
def data_preprocess(train, test):
    outlier_idx = [4, 11, 13, 20, 46, 66, 70, 167, 178, 185, 199, 224, 261, 309, 313, 318, 349, 412, 423, 440, 454, 477,
                   478, 523, 540, 581, 588, 595, 654, 688, 691, 774, 798, 875, 898, 926, 970, 987, 1027, 1109, 1169,
                   1182, 1239, 1256, 1298, 1324, 1353, 1359, 1405, 1442, 1447]
    train.drop(train.index[outlier_idx], inplace=True)
    all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'],
                          test.loc[:, 'MSSubClass':'SaleCondition']))

    to_delete = ['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature']
    all_data = all_data.drop(to_delete, axis=1)

    train["SalePrice"] = np.log1p(train["SalePrice"])
    # log transform skewed numeric features
    numeric_feats = all_data.dtypes[all_data.dtypes != "object"].index
    skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna()))  # compute skewness
    skewed_feats = skewed_feats[skewed_feats > 0.75]
    skewed_feats = skewed_feats.index
    all_data[skewed_feats] = np.log1p(all_data[skewed_feats])
    all_data = pd.get_dummies(all_data)
    all_data = all_data.fillna(method='ffill')
    X_train = all_data[:train.shape[0]]
    X_test = all_data[train.shape[0]:]
    y = train.SalePrice

    return X_train, X_test, y
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号