def normalize(timeSeries,nfFactor) :
if isinstance(timeSeries[0],(int,float)) == True :
nFeatures = 1
else :
nFeatures = len(timeSeries[0])
assert len(nfFactor) == nFeatures
nSamples = len(timeSeries)
normalizedTimeSeries = []
for i in xrange(0,nFeatures) :
if nfFactor[i] == 0.0 :
nfFactor[i] = 1.0
for i in xrange(0,nSamples):
if isinstance(timeSeries[0],(int,float)) == True :
normalizedTimeSeries.append(float(timeSeries[i])/float(nfFactor[0]))
else :
normalizedTimeSeries.append(map(truediv,timeSeries[i],nfFactor))
return np.array(normalizedTimeSeries)
评论列表
文章目录