def snapshot(self, sess, iter):
net = self.net
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
# Store the model snapshot
filename = cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_{:d}'.format(iter) + '.ckpt'
filename = os.path.join(self.output_dir, filename)
self.saver.save(sess, filename)
print('Wrote snapshot to: {:s}'.format(filename))
# Also store some meta information, random state, etc.
nfilename = cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_{:d}'.format(iter) + '.pkl'
nfilename = os.path.join(self.output_dir, nfilename)
# current state of numpy random
st0 = np.random.get_state()
# current position in the database
cur = self.data_layer._cur
# current shuffled indexes of the database
perm = self.data_layer._perm
# current position in the validation database
cur_val = self.data_layer_val._cur
# current shuffled indexes of the validation database
perm_val = self.data_layer_val._perm
# Dump the meta info
with open(nfilename, 'wb') as fid:
pickle.dump(st0, fid, pickle.HIGHEST_PROTOCOL)
pickle.dump(cur, fid, pickle.HIGHEST_PROTOCOL)
pickle.dump(perm, fid, pickle.HIGHEST_PROTOCOL)
pickle.dump(cur_val, fid, pickle.HIGHEST_PROTOCOL)
pickle.dump(perm_val, fid, pickle.HIGHEST_PROTOCOL)
pickle.dump(iter, fid, pickle.HIGHEST_PROTOCOL)
return filename, nfilename
评论列表
文章目录