def gen_pruned_features(name):
print name
feature_dir = 'data/feature_' + args.domain + \
'_' + str(args.n_boxes) + 'boxes/' + name + '/'
n_clips = len(glob.glob(feature_dir + BOX_FEATURE + '*.npy'))
for clip in xrange(1, n_clips+1):
pruned_boxes = np.load(feature_dir + BOX_FEATURE + '{:04d}.npy'.format(clip)) # (50, args.n_boxes, 4)
roisavg = np.load(feature_dir + 'roisavg{:04d}.npy'.format(clip)) # (50, args.n_boxes, 512)
pruned_roisavg = np.zeros((50, args.n_boxes, 512))
for frame in xrange(50):
for box_id in xrange(args.n_boxes):
if not np.array_equal(pruned_boxes[frame][box_id], np.zeros((4))):
pruned_roisavg[frame][box_id] = roisavg[frame][box_id]
np.save('{}pruned_roisavg{:04d}'.format(feature_dir, clip), pruned_roisavg)
pruned_box_features.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录