def prepare(self):
gt_labels = self.load_labels()
if self.flipped:
print('Appending horizontally-flipped training examples ...')
gt_labels_cp = copy.deepcopy(gt_labels)
for idx in range(len(gt_labels_cp)):
gt_labels_cp[idx]['flipped'] = True
gt_labels_cp[idx]['label'] = gt_labels_cp[idx]['label'][:, ::-1, :]
for i in xrange(self.cell_size):
for j in xrange(self.cell_size):
if gt_labels_cp[idx]['label'][i, j, 0] == 1:
gt_labels_cp[idx]['label'][i, j, 1] = self.image_size - 1 - gt_labels_cp[idx]['label'][i, j, 1]
gt_labels += gt_labels_cp
np.random.shuffle(gt_labels)
self.gt_labels = gt_labels
return gt_labels
评论列表
文章目录