def transform_inverse(self, df):
price = pd.read_csv(self.path_to_price, parse_dates=True, index_col='Unnamed: 0')
#
index = []
values = []
days = extract_days(df)
time_intervs_in_day = [d.time() for i, d in enumerate(price.index)]
for day in days:
i = 0
for time_intv in time_intervs_in_day:
if time_intv <= df.index[i].time():
values.append(df.values[i][0])
index.append(datetime.combine(day, time_intv))
else:
i+=1
values.append(df.values[i][0])
index.append(datetime.combine(day, time_intv))
df_out = pd.DataFrame(values, columns=[df.columns[0]], index=index)
return df_out
feature_engineering.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录