def test_nan(self):
output = convert(
'table',
{
'format': 'csv',
'url': 'file://' + os.path.join('data', 'RadiomicsData.csv')
},
{'format': 'rows.json'}
)
data = json.loads(output['data'])
self.assertEqual(len(data['fields']), 454)
self.assertEqual(data['fields'][:3], [
'GLCM_autocorr', 'GLCM_clusProm', 'GLCM_clusShade'
])
self.assertEqual(len(data['rows']), 99)
for row in data['rows']:
for field in row:
if isinstance(row[field], float):
self.assertFalse(math.isnan(row[field]))
self.assertFalse(math.isinf(row[field]))
评论列表
文章目录