def extract_all_features(save_dir, data_dir=DATA_DIR, extension=".cell"):
from naive_bayes import extract_nb_features
from random_forest import extract_rf_features
from svc1 import extract_svc1_features
from svc2 import extract_svc2_features
import subprocess
create_dir_if_not_exists(save_dir + '/knn_cells/')
subprocess.run([
'go', 'run', dirname + '/kNN.go', '-folder', data_dir + '/',
'-new_path', save_dir + '/knn_cells/', '-extension', extension]
)
# extract_features(extract_nb_features, save_dir + '/nb_cells', data_dir=data_dir, extension=extension, model_name="naive bayes")
extract_features(extract_rf_features, save_dir + '/rf_cells', data_dir=data_dir, extension=extension, model_name="random forest")
extract_features(extract_svc1_features, save_dir + '/svc1_cells', data_dir=data_dir, extension=extension, model_name="svc1")
extract_features(extract_svc2_features, save_dir + '/svc2_cells', data_dir=data_dir, extension=extension, model_name="svc2")
stdout.write("Finished extracting features\n")
feature_extraction.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录