def __init__(self, root, split="train_aug",
is_transform=False, img_size=512, augmentations=None):
self.root = root
self.split = split
self.is_transform = is_transform
self.augmentations = augmentations
self.n_classes = 21
self.img_size = img_size if isinstance(img_size, tuple) else (img_size, img_size)
self.mean = np.array([104.00699, 116.66877, 122.67892])
self.files = collections.defaultdict(list)
for split in ["train", "val", "trainval"]:
file_list = tuple(open(root + '/ImageSets/Segmentation/' + split + '.txt', 'r'))
file_list = [id_.rstrip() for id_ in file_list]
self.files[split] = file_list
if not os.path.isdir(self.root + '/SegmentationClass/pre_encoded'):
self.setup(pre_encode=True)
else:
self.setup(pre_encode=False)
评论列表
文章目录