def _compute_extra_terms(Y, W, items_u, trustees_u):
# Implicit information
norm_Iu = math.sqrt(len(items_u))
# TODO: Clean this. Hint: np.nans
y_term = 0
if norm_Iu > 0:
y_sum = np.sum(Y[items_u, :], axis=0)
y_term = y_sum / norm_Iu
# Trust information
w_term = 0
norm_Tu = math.sqrt(len(trustees_u))
if norm_Tu > 0:
w_sum = np.sum(W[trustees_u, :], axis=0)
w_term = w_sum / norm_Tu
return y_term, w_term, norm_Iu, norm_Tu
评论列表
文章目录