def score(self,xnew):
"""
Generate scores for new x values
xNew should be an array-like object where each row represents a test point
Return the predicted mean and standard deviation [mu,s]
@param{np.Array} xnew. An numpy array where each row corrosponds to an observation
@output{Array} mu. A list containing predicted mean values
@output{Array} s. A list containing predicted standard deviations
"""
self._validate_xnew(xnew)
#mu,sd = self.gp.predict(xnew,return_std=True)
#return {'mu':mu.T.tolist()[0], 'sd':sd.tolist()}
#K_trans = self.kernel(X, self.xTrain)
#y_mean = K_trans.dot(self.alpha_) # Line 4 (y_mean = f_star)
#y_mean = self.y_train_mean + y_mean # undo normal.
# Compute variance of predictive distribution
#y_var = self.kernel_.diag(X)
#y_var -= np.einsum("ki,kj,ij->k", K_trans, K_trans, K_inv)
# Check if any of the variances is negative because of
# numerical issues. If yes: set the variance to 0.
#y_var_negative = y_var < 0
#if np.any(y_var_negative):
# warnings.warn("Predicted variances smaller than 0. "
# "Setting those variances to 0.")
# y_var[y_var_negative] = 0.0
#return y_mean, np.sqrt(y_var)
评论列表
文章目录