def periodogram(x, nfft=None, fs=1):
"""Compute the periodogram of the given signal, with the given fft size.
Parameters
----------
x : array-like
input signal
nfft : int
size of the fft to compute the periodogram. If None (default), the
length of the signal is used. if nfft > n, the signal is 0 padded.
fs : float
Sampling rate. By default, is 1 (normalized frequency. e.g. 0.5 is the
Nyquist limit).
Returns
-------
pxx : array-like
The psd estimate.
fgrid : array-like
Frequency grid over which the periodogram was estimated.
Examples
--------
Generate a signal with two sinusoids, and compute its periodogram:
>>> fs = 1000
>>> x = np.sin(2 * np.pi * 0.1 * fs * np.linspace(0, 0.5, 0.5*fs))
>>> x += np.sin(2 * np.pi * 0.2 * fs * np.linspace(0, 0.5, 0.5*fs))
>>> px, fx = periodogram(x, 512, fs)
Notes
-----
Only real signals supported for now.
Returns the one-sided version of the periodogram.
Discrepency with matlab: matlab compute the psd in unit of power / radian /
sample, and we compute the psd in unit of power / sample: to get the same
result as matlab, just multiply the result from talkbox by 2pi"""
x = np.atleast_1d(x)
n = x.size
if x.ndim > 1:
raise ValueError("Only rank 1 input supported for now.")
if not np.isrealobj(x):
raise ValueError("Only real input supported for now.")
if not nfft:
nfft = n
if nfft < n:
raise ValueError("nfft < signal size not supported yet")
pxx = np.abs(fft(x, nfft)) ** 2
if nfft % 2 == 0:
pn = nfft / 2 + 1
else:
pn = (nfft + 1 )/ 2
fgrid = np.linspace(0, fs * 0.5, pn)
return pxx[:pn] / (n * fs), fgrid
评论列表
文章目录