def rank(a):
"""
Return the number of dimensions of an array.
If `a` is not already an array, a conversion is attempted.
Scalars are zero dimensional.
.. note::
This function is deprecated in NumPy 1.9 to avoid confusion with
`numpy.linalg.matrix_rank`. The ``ndim`` attribute or function
should be used instead.
Parameters
----------
a : array_like
Array whose number of dimensions is desired. If `a` is not an array,
a conversion is attempted.
Returns
-------
number_of_dimensions : int
The number of dimensions in the array.
See Also
--------
ndim : equivalent function
ndarray.ndim : equivalent property
shape : dimensions of array
ndarray.shape : dimensions of array
Notes
-----
In the old Numeric package, `rank` was the term used for the number of
dimensions, but in Numpy `ndim` is used instead.
Examples
--------
>>> np.rank([1,2,3])
1
>>> np.rank(np.array([[1,2,3],[4,5,6]]))
2
>>> np.rank(1)
0
"""
# 2014-04-12, 1.9
warnings.warn(
"`rank` is deprecated; use the `ndim` attribute or function instead. "
"To find the rank of a matrix see `numpy.linalg.matrix_rank`.",
VisibleDeprecationWarning)
try:
return a.ndim
except AttributeError:
return asarray(a).ndim
评论列表
文章目录