data_reader.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:Quantum_machine_learning 作者: kchng 项目源码 文件源码
def next_dose_old(self, batch_size = 50) :

            def convert_to_one_hot( label ) :
                label_one_hot = np.zeros((len(label),2))
                for i in range(len(label)) :
                    label_one_hot[i,label[i]] = 1
                return label_one_hot

            start = self._index_in_datafile 
            if ( self._file_index == self.start_file_index ) and ( start == 0 ) :
                self.batch_size = batch_size
                while np.modf(float(self.nrows)/self.batch_size)[0] > 0.0 :
                     print 'Warning! Number of data per file/ dose size must be an integer.'
                     print 'number of data per file: %d' % self.nrows
                     print 'dose size: %d'               % self.batch_size
                     self.batch_size = int(input('Input new dose size: '))
                print 'dose size : %d'    % self.batch_size
                print 'number of data: %d' % self._ndata
                self.shuffle_index_dose_old = np.arange(0,self.batch_size,1)

            self._index_in_datafile += self.batch_size
            if self._index_in_datafile > self.nrows :
                self._file_index += 1
                start = 0
                self._index_in_datafile = self.batch_size
                assert self.batch_size <= self.nrows

            if self._file_index > self.end_file_index :
                # Number of training epochs completed
                self._epochs_completed += 1
                self._file_index = self.start_file_index
                # Reinitialize conunter
                start = 0
                self._index_in_datafile = self.batch_size

            end = self._index_in_datafile

            # Read in small dosage of data
            data = np.genfromtxt(self.full_file_path%(self._file_index) ,dtype=int,
                   skip_header=start, skip_footer=self.nrows-end)
            self._images = data[:,:-1].astype('int')
            labels = data[:,-1:].astype('int')
            if self.convert_to_one_hot :
                self._labels = convert_to_one_hot(labels)
            # Shufle data
            random.shuffle(self.shuffle_index_dose_old)
            self._images = self._images[self.shuffle_index_dose_old]
            self._labels = self._labels[self.shuffle_index_dose_old]

            return self._images, self._labels
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号