def _sample_n(self, n, seed=None):
shape = array_ops.concat(([n], array_ops.shape(self._lam)), 0)
# Sample uniformly-at-random from the open-interval (0, 1).
sampled = random_ops.random_uniform(
shape,
minval=np.nextafter(self.dtype.as_numpy_dtype(0.),
self.dtype.as_numpy_dtype(1.)),
maxval=array_ops.ones((), dtype=self.dtype),
seed=seed,
dtype=self.dtype)
return -math_ops.log(sampled) / self._lam
exponential.py 文件源码
python
阅读 38
收藏 0
点赞 0
评论 0
评论列表
文章目录