gasrank.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:pyflux 作者: RJT1990 项目源码 文件源码
def predict_two_components(self, team_1, team_2, team_1b, team_2b, neutral=False):
        """
        Returns team 1's probability of winning
        """
        if self.latent_variables.estimated is False:
            raise Exception("No latent variables estimated!")
        else:
            if type(team_1) == str:
                team_1_ability = np.trim_zeros(self._model_abilities(self.latent_variables.get_z_values())[0].T[self.team_dict[team_1]], trim='b')[-1]
                team_2_ability = np.trim_zeros(self._model_abilities(self.latent_variables.get_z_values())[0].T[self.team_dict[team_2]], trim='b')[-1]
                team_1_b_ability = np.trim_zeros(self._model_abilities(self.latent_variables.get_z_values())[1].T[self.team_dict[team_1]], trim='b')[-1]
                team_2_b_ability = np.trim_zeros(self._model_abilities(self.latent_variables.get_z_values())[1].T[self.team_dict[team_2]], trim='b')[-1]

            else:
                team_1_ability = np.trim_zeros(self._model_abilities(self.latent_variables.get_z_values())[0].T[team_1], trim='b')[-1]
                team_2_ability = np.trim_zeros(self._model_abilities(self.latent_variables.get_z_values())[0].T[team_2], trim='b')[-1]
                team_1_b_ability = np.trim_zeros(self._model_abilities(self.latent_variables.get_z_values())[1].T[team_1_b], trim='b')[-1]
                team_2_b_ability = np.trim_zeros(self._model_abilities(self.latent_variables.get_z_values())[1].T[team_2_b], trim='b')[-1]

        t_z = self.transform_z()

        if neutral is False:
            return self.link(t_z[0] + team_1_ability - team_2_ability + team_1_b_ability - team_2_b_ability)
        else:
            return self.link(team_1_ability - team_2_ability + team_1_b_ability - team_2_b_ability)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号