image.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:Parallel-SGD 作者: angadgill 项目源码 文件源码
def _to_graph(n_x, n_y, n_z, mask=None, img=None,
              return_as=sparse.coo_matrix, dtype=None):
    """Auxiliary function for img_to_graph and grid_to_graph
    """
    edges = _make_edges_3d(n_x, n_y, n_z)

    if dtype is None:
        if img is None:
            dtype = np.int
        else:
            dtype = img.dtype

    if img is not None:
        img = np.atleast_3d(img)
        weights = _compute_gradient_3d(edges, img)
        if mask is not None:
            edges, weights = _mask_edges_weights(mask, edges, weights)
            diag = img.squeeze()[mask]
        else:
            diag = img.ravel()
        n_voxels = diag.size
    else:
        if mask is not None:
            mask = astype(mask, dtype=np.bool, copy=False)
            mask = np.asarray(mask, dtype=np.bool)
            edges = _mask_edges_weights(mask, edges)
            n_voxels = np.sum(mask)
        else:
            n_voxels = n_x * n_y * n_z
        weights = np.ones(edges.shape[1], dtype=dtype)
        diag = np.ones(n_voxels, dtype=dtype)

    diag_idx = np.arange(n_voxels)
    i_idx = np.hstack((edges[0], edges[1]))
    j_idx = np.hstack((edges[1], edges[0]))
    graph = sparse.coo_matrix((np.hstack((weights, weights, diag)),
                              (np.hstack((i_idx, diag_idx)),
                               np.hstack((j_idx, diag_idx)))),
                              (n_voxels, n_voxels),
                              dtype=dtype)
    if return_as is np.ndarray:
        return graph.toarray()
    return return_as(graph)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号