def _chol_idx(self, n_C, rank):
l_idx = np.tril_indices(n_C)
if rank is not None:
# The rank of covariance matrix is specified
idx_rank = np.where(l_idx[1] < rank)
l_idx = (l_idx[0][idx_rank], l_idx[1][idx_rank])
logger.info('Using the rank specified by the user: '
'{}'.format(rank))
else:
rank = n_C
# if not specified, we assume you want to
# estimate a full rank matrix
logger.warning('Please be aware that you did not specify the'
' rank of covariance matrix to estimate.'
'I will assume that the covariance matrix '
'shared among voxels is of full rank.'
'Rank = {}'.format(rank))
logger.warning('Please be aware that estimating a matrix of '
'high rank can be very slow.'
'If you have a good reason to specify a rank '
'lower than the number of experiment conditions,'
' do so.')
return l_idx, rank
评论列表
文章目录