def dcg_at_k(r, k, method=1):
"""Score is discounted cumulative gain (dcg)
Relevance is positive real values. Can use binary
as the previous methods.
Returns:
Discounted cumulative gain
"""
r = np.asfarray(r)[:k]
if r.size:
if method == 0:
return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1)))
elif method == 1:
return np.sum(r / np.log2(np.arange(2, r.size + 2)))
else:
raise ValueError('method must be 0 or 1.')
return 0.
评论列表
文章目录