preproc_utils.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:Kaggle-DSB 作者: Wrosinski 项目源码 文件源码
def get_segmented_lungs(image):
    #Creation of the markers as shown above:
    marker_internal, marker_external, marker_watershed = generate_markers(image)

    #Creation of the Sobel-Gradient
    sobel_filtered_dx = ndimage.sobel(image, 1)
    sobel_filtered_dy = ndimage.sobel(image, 0)
    sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy)
    sobel_gradient *= 255.0 / np.max(sobel_gradient)

    #Watershed algorithm
    watershed = morphology.watershed(sobel_gradient, marker_watershed)

    #Reducing the image created by the Watershed algorithm to its outline
    outline = ndimage.morphological_gradient(watershed, size=(3,3))
    outline = outline.astype(bool)

    #Performing Black-Tophat Morphology for reinclusion
    #Creation of the disk-kernel and increasing its size a bit
    blackhat_struct = [[0, 0, 1, 1, 1, 0, 0],
                       [0, 1, 1, 1, 1, 1, 0],
                       [1, 1, 1, 1, 1, 1, 1],
                       [1, 1, 1, 1, 1, 1, 1],
                       [1, 1, 1, 1, 1, 1, 1],
                       [0, 1, 1, 1, 1, 1, 0],
                       [0, 0, 1, 1, 1, 0, 0]]
    #blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8)
    blackhat_struct = ndimage.iterate_structure(blackhat_struct, 14) # <- retains more of the area, 12 works well. Changed to 14, 12 still excluded some parts.
    #Perform the Black-Hat
    outline += ndimage.black_tophat(outline, structure=blackhat_struct)

    #Use the internal marker and the Outline that was just created to generate the lungfilter
    lungfilter = np.bitwise_or(marker_internal, outline)
    #Close holes in the lungfilter
    #fill_holes is not used here, since in some slices the heart would be reincluded by accident
    lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=np.ones((5,5)), iterations=3)

    #Apply the lungfilter (note the filtered areas being assigned threshold_min HU)
    segmented = np.where(lungfilter == 1, image, threshold_min*np.ones(image.shape))

    #return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed
    return segmented
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号