unet_d8g_222f.py 文件源码

python
阅读 29 收藏 0 点赞 0 评论 0

项目:kaggle_dsb2017 作者: astoc 项目源码 文件源码
def seperate_lungs(image):
    #Creation of the markers as shown above:
    marker_internal, marker_external, marker_watershed = generate_markers(image)

    #Creation of the Sobel-Gradient
    sobel_filtered_dx = ndimage.sobel(image, 1)
    sobel_filtered_dy = ndimage.sobel(image, 0)
    sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy)
    sobel_gradient *= 255.0 / np.max(sobel_gradient)

    #Watershed algorithm
    watershed = morphology.watershed(sobel_gradient, marker_watershed)

    #Reducing the image created by the Watershed algorithm to its outline
    outline = ndimage.morphological_gradient(watershed, size=(3,3))
    outline = outline.astype(bool)

    #Performing Black-Tophat Morphology for reinclusion
    #Creation of the disk-kernel and increasing its size a bit
    blackhat_struct = [[0, 0, 1, 1, 1, 0, 0],
                       [0, 1, 1, 1, 1, 1, 0],
                       [1, 1, 1, 1, 1, 1, 1],
                       [1, 1, 1, 1, 1, 1, 1],
                       [1, 1, 1, 1, 1, 1, 1],
                       [0, 1, 1, 1, 1, 1, 0],
                       [0, 0, 1, 1, 1, 0, 0]]
    blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8)
    #Perform the Black-Hat
    outline += ndimage.black_tophat(outline, structure=blackhat_struct)

    #Use the internal marker and the Outline that was just created to generate the lungfilter
    lungfilter = np.bitwise_or(marker_internal, outline)
    #Close holes in the lungfilter
    #fill_holes is not used here, since in some slices the heart would be reincluded by accident
    ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is
    structure = morphology.disk(BINARY_CLOSING_SIZE) # better , 5 seems sufficient, we use 7 for safety/just in case
    lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, iterations=3)  # was structure=np.ones((5,5))
    ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more

    #Apply the lungfilter (note the filtered areas being assigned -2000 HU)
    segmented = np.where(lungfilter == 1, image, -2000*np.ones((512, 512)))  ### was -2000

    return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号