def _logcdf(self, samples):
if self.theta == 0:
vals = np.sum(np.log(samples), axis=1)
else:
old_settings = np.seterr(divide='ignore')
vals = np.log(-np.log1p(np.expm1(-self.theta * samples[:, 0])
* np.expm1(-self.theta * samples[:, 1])
/ (np.expm1(-self.theta)))) \
- np.log(self.theta)
np.seterr(**old_settings)
return vals
评论列表
文章目录