def test_covariances_and_eigenvalues(self):
reader = FeatureReader(self.trajnames, self.temppdb)
for tau in [1, 10, 100, 1000, 2000]:
trans = tica(lag=tau, dim=self.dim, kinetic_map=False)
trans.data_producer = reader
log.info('number of trajectories reported by tica %d' % trans.number_of_trajectories())
trans.parametrize()
data = trans.get_output()
log.info('max. eigenvalue: %f' % np.max(trans.eigenvalues))
self.assertTrue(np.all(trans.eigenvalues <= 1.0))
# check ICs
check = tica(data=data, lag=tau, dim=self.dim)
np.testing.assert_allclose(np.eye(self.dim), check.cov, atol=1e-8)
np.testing.assert_allclose(check.mean, 0.0, atol=1e-8)
ic_cov_tau = np.zeros((self.dim, self.dim))
ic_cov_tau[np.diag_indices(self.dim)] = trans.eigenvalues
np.testing.assert_allclose(ic_cov_tau, check.cov_tau, atol=1e-8)
test_featurereader_and_tica_projection.py 文件源码
python
阅读 49
收藏 0
点赞 0
评论 0
评论列表
文章目录