external_optimizer.py 文件源码

python
阅读 37 收藏 0 点赞 0 评论 0

项目:GPflow 作者: GPflow 项目源码 文件源码
def _initialize_updated_shapes(self, session):
    shapes = array_ops.shape_n(self._vars)
    var_shapes = list(map(tuple, session.run(shapes)))

    if self._var_shapes is not None:
      new_old_shapes = zip(self._var_shapes, var_shapes)
      if all([old == new for old, new in new_old_shapes]):
        return

    self._var_shapes = var_shapes
    vars_and_shapes = zip(self._vars, self._var_shapes)
    vars_and_shapes_dict = dict(vars_and_shapes)

    packed_bounds = None
    if self._var_to_bounds is not None:
      left_packed_bounds = []
      right_packed_bounds = []
      for var, var_shape in vars_and_shapes:
        shape = list(var_shape)
        bounds = (-np.infty, np.infty)
        if var in var_to_bounds:
          bounds = var_to_bounds[var]
        left_packed_bounds.extend(list(np.broadcast_to(bounds[0], shape).flat))
        right_packed_bounds.extend(list(np.broadcast_to(bounds[1], shape).flat))
      packed_bounds = list(zip(left_packed_bounds, right_packed_bounds))
    self._packed_bounds = packed_bounds

    self._update_placeholders = [
        array_ops.placeholder(var.dtype) for var in self._vars
    ]
    self._var_updates = [
        var.assign(array_ops.reshape(placeholder, vars_and_shapes_dict[var]))
        for var, placeholder in zip(self._vars, self._update_placeholders)
    ]

    loss_grads = _compute_gradients(self._loss, self._vars)
    equalities_grads = [
        _compute_gradients(equality, self._vars)
        for equality in self._equalities
    ]
    inequalities_grads = [
        _compute_gradients(inequality, self._vars)
        for inequality in self._inequalities
    ]

    self._packed_var = self._pack(self._vars)
    self._packed_loss_grad = self._pack(loss_grads)
    self._packed_equality_grads = [
        self._pack(equality_grads) for equality_grads in equalities_grads
    ]
    self._packed_inequality_grads = [
        self._pack(inequality_grads) for inequality_grads in inequalities_grads
    ]

    dims = [_prod(vars_and_shapes_dict[var]) for var in self._vars]
    accumulated_dims = list(_accumulate(dims))
    self._packing_slices = [
        slice(start, end)
        for start, end in zip(accumulated_dims[:-1], accumulated_dims[1:])
    ]
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号