def compute_mean(self, file_list):
logger = logging.getLogger("acoustic_norm")
mean_vector = numpy.zeros((1, self.feature_dimension))
all_frame_number = 0
io_funcs = BinaryIOCollection()
for file_name in file_list:
features = io_funcs.load_binary_file(file_name, self.feature_dimension)
current_frame_number = features.size // self.feature_dimension
mean_vector += numpy.reshape(numpy.sum(features, axis=0), (1, self.feature_dimension))
all_frame_number += current_frame_number
mean_vector /= float(all_frame_number)
# po=numpy.get_printoptions()
# numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
logger.info(' mean: %s' % mean_vector)
# restore the print options
# numpy.set_printoptions(po)
return mean_vector
评论列表
文章目录