def test_eigvalsh_grad():
if not imported_scipy:
raise SkipTest("Scipy needed for the geigvalsh op.")
import scipy.linalg
rng = numpy.random.RandomState(utt.fetch_seed())
a = rng.randn(5, 5)
a = a + a.T
b = 10 * numpy.eye(5, 5) + rng.randn(5, 5)
tensor.verify_grad(lambda a, b: eigvalsh(a, b).dot([1, 2, 3, 4, 5]),
[a, b], rng=numpy.random)
评论列表
文章目录