cma_es_lib.py 文件源码

python
阅读 34 收藏 0 点赞 0 评论 0

项目:rllabplusplus 作者: shaneshixiang 项目源码 文件源码
def likelihood(x, m=None, Cinv=None, sigma=1, detC=None):
        """return likelihood of x for the normal density N(m, sigma**2 * Cinv**-1)"""
        # testing: MC integrate must be one: mean(p(x_i)) * volume(where x_i are uniformely sampled)
        # for i in xrange(3): print mean([cma.likelihood(20*r-10, dim * [0], None, 3) for r in rand(10000,dim)]) * 20**dim
        if m is None:
            dx = x
        else:
            dx = x - m  # array(x) - array(m)
        n = len(x)
        s2pi = (2 * np.pi)**(n / 2.)
        if Cinv is None:
            return exp(-sum(dx**2) / sigma**2 / 2) / s2pi / sigma**n
        if detC is None:
            detC = 1. / np.linalg.linalg.det(Cinv)
        return  exp(-np.dot(dx, np.dot(Cinv, dx)) / sigma**2 / 2) / s2pi / abs(detC)**0.5 / sigma**n
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号