def input_generator():
for dtype in [np.float64]:
for nsamples in [1000, 10000]:
sigma = 5.0
samples = np.random.normal(loc=0.0, scale=sigma, size=nsamples).astype(dtype)
# For simplicity, initialize bandwidth array with constant using 1D rule of thumb
bandwidths = np.full_like(samples, 1.06 * nsamples**0.2 * sigma)
for neval in [10, 1000, 10000]:
category = ('samples%d' % nsamples, np.dtype(dtype).name)
eval_points = np.random.normal(loc=0.0, scale=5.0, size=neval).astype(dtype)
yield dict(category=category, x=neval, input_args=(eval_points, samples, bandwidths), input_kwargs={})
#### BEGIN: numpy
评论列表
文章目录