ranking_experiments.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:clinspell 作者: clips 项目源码 文件源码
def __init__(self, parameters, language):

        assert language in ["en", "nl"]
        self.language = language

        # load frequency list
        pathtofrequencies = 'frequencies_' + language + '.json'
        # load trained fasttext model
        pathtomodel = 'embeddings_' + language + '.bin'
        # give path to fasttext vectors
        pathtovectors = 'embeddings_' + language + '.vec'

        # PHASE 1
        self.comp_function = parameters['comp_function']  # item from ["sum", "mult", "max"]
        self.include_misspelling = parameters['include_misspelling']  # boolean
        self.include_oov_candidates = parameters['include_oov_candidates']  # boolean
        self.pathtovectors = pathtovectors  # path to fasttext vectors
        self.model = fasttext.load_model(pathtomodel)   # path to fasttext model

        # PHASE 2
        self.window_size = parameters['window_size']  # number in range(0,11)
        self.reciprocal = parameters['reciprocal']  # boolean
        self.remove_stopwords = parameters['remove_stopwords']  # boolean
        self.stopwords = frozenset(json.load(open('stopwords_' + str(self.language) + '.json', 'r')))

        # PHASE 3
        self.edit_distance = parameters['edit_distance']  # item from [1, 2, 3, 4]

        # PHASE 4
        self.oov_penalty = parameters['oov_penalty']  # oov penalty tuned with self.tune_oov()

        # OUTPUT
        self.ranking_method = parameters['ranking_method']  # item from ["context", "noisy_channel", "frequency",
        # "ensemble"]
        self.frequency_dict = json.load(open(pathtofrequencies, 'r'))  # path to frequency list
        self.k = parameters['k-best']  # positive natural number
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号