def sphere(rows, cols, radius=1.0, offset=True):
"""
Return a MeshData instance with vertexes and faces computed
for a spherical surface.
"""
verts = np.empty((rows+1, cols, 3), dtype=float)
## compute vertexes
phi = (np.arange(rows+1) * np.pi / rows).reshape(rows+1, 1)
s = radius * np.sin(phi)
verts[...,2] = radius * np.cos(phi)
th = ((np.arange(cols) * 2 * np.pi / cols).reshape(1, cols))
if offset:
th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1)) ## rotate each row by 1/2 column
verts[...,0] = s * np.cos(th)
verts[...,1] = s * np.sin(th)
verts = verts.reshape((rows+1)*cols, 3)[cols-1:-(cols-1)] ## remove redundant vertexes from top and bottom
## compute faces
faces = np.empty((rows*cols*2, 3), dtype=np.uint)
rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])
rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])
for row in range(rows):
start = row * cols * 2
faces[start:start+cols] = rowtemplate1 + row * cols
faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols
faces = faces[cols:-cols] ## cut off zero-area triangles at top and bottom
## adjust for redundant vertexes that were removed from top and bottom
vmin = cols-1
faces[faces<vmin] = vmin
faces -= vmin
vmax = verts.shape[0]-1
faces[faces>vmax] = vmax
return MeshData(vertexes=verts, faces=faces)
评论列表
文章目录