def test_train_and_predict_with_rf(self):
rs = np.random.RandomState(1)
X = rs.rand(20, 10)
Y = rs.rand(10, 2)
model = UncorrelatedMultiObjectiveRandomForestWithInstances(
['cost', 'ln(runtime)'],
types=np.zeros((10, ), dtype=np.uint),
bounds=np.array([
(0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan),
(0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan)
], dtype=object),
rf_kwargs={'seed': 1},
pca_components=5
)
self.assertEqual(model.estimators[0].seed, 1)
self.assertEqual(model.estimators[1].seed, 1)
self.assertEqual(model.pca_components, 5)
model.train(X[:10], Y)
m, v = model.predict(X[10:])
self.assertEqual(m.shape, (10, 2))
self.assertEqual(v.shape, (10, 2))
test_uncorrelated_mo_rf_with_instances.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录