def predict(self, X):
if not hasattr(self, "classes_"):
raise ValueError('fit')
if self.normalize_:
X = self._sc_X.fit_transform(X)
X_ = self.transform(X)
y_pred = self.estimator.predict(X_)
return self.classes_.take(np.asarray(y_pred, dtype=np.intp))
# elif self.predict_with == 'all':
#
# predict_ = []
#
# for mask in self.mask_:
# self.estimator.fit(X=self.transform(self.X_, mask=mask), y=self.y_)
# X_ = self.transform(X, mask=mask)
# y_pred = self.estimator.predict(X_)
# predict_.append(self.classes_.take(np.asarray(y_pred, dtype=np.intp)))
# return np.asarray(predict_)
评论列表
文章目录