def tune_everything(x0squared, C, T, gmin, gmax):
# First tune based on dynamic range
if C==0:
dr=gmax/gmin
mustar=((np.sqrt(dr)-1)/(np.sqrt(dr)+1))**2
alpha_star = (1+np.sqrt(mustar))**2/gmax
return alpha_star,mustar
dist_to_opt = x0squared
grad_var = C
max_curv = gmax
min_curv = gmin
const_fact = dist_to_opt * min_curv**2 / 2 / grad_var
coef = [-1, 3, -(3 + const_fact), 1]
roots = np.roots(coef)
roots = roots[np.real(roots) > 0]
roots = roots[np.real(roots) < 1]
root = roots[np.argmin(np.imag(roots) ) ]
assert root > 0 and root < 1 and np.absolute(root.imag) < 1e-6
dr = max_curv / min_curv
assert max_curv >= min_curv
mu = max( ( (np.sqrt(dr) - 1) / (np.sqrt(dr) + 1) )**2, root**2)
lr_min = (1 - np.sqrt(mu) )**2 / min_curv
lr_max = (1 + np.sqrt(mu) )**2 / max_curv
alpha_star = lr_min
mustar = mu
return alpha_star, mustar
评论列表
文章目录