def applyNNBig(Xin,model,msize=500,start=150):
#Returns an adjacency matrix
n_features=Xin.shape[1]
X=Xin.copy()
#Center
X -= X.mean(axis=0)
std = X.std(axis=0)
std[std == 0] = 1
X /= std
larger=np.zeros((msize,msize))
larger[start:start+n_features,start:start+n_features]=X.T.dot(X)/X.shape[0]
emp_cov_matrix=np.expand_dims(larger,0)
pred=model.predict(np.expand_dims(emp_cov_matrix,0))
pred=pred.reshape(msize,msize)[start:start+n_features,start:start+n_features]
C=np.zeros((X.shape[1],X.shape[1]))
C[np.triu_indices(n_features,k=1)]=pred[np.triu_indices(n_features,k=1)]
C=C+C.T
return C
评论列表
文章目录