def get_target(self, model, samples, metas):
yt_index=[]
if len(self.output_shape) == 2:
for b in range(len(metas)):
yt_index.append(numpy.ravel_multi_index((b, metas[b]["image_class"]), self.output_shape))
elif len(self.valid) > 0:
for b in range(len(metas)):
for v in range(len(self.valid)):
yt_index.append(numpy.ravel_multi_index((b, metas[b]["image_class"], v), self.output_shape))
else:
for b in range(len(metas)):
cls = metas[b]["image_class"]
for y in range(self.output_shape[2]):
for x in range(self.output_shape[3]):
yt_index.append(numpy.ravel_multi_index((b, metas[b]["image_class"], y, x), self.output_shape))
return numpy.array(yt_index, dtype=numpy.int64), numpy.array([], dtype=theano.config.floatX)
#return negative log-likelihood training cost (scalar)
评论列表
文章目录