def _gaus_condition(self, xi):
if np.ma.count_masked(xi) == 0:
return xi
a = xi.mask
b = ~xi.mask
xb = xi[b].data
Laa = self.prec[np.ix_(a, a)]
Lab = self.prec[np.ix_(a, b)]
xfill = np.empty_like(xi)
xfill[b] = xb
xfill[a] = self.mean[a] - solve(Laa, Lab.dot(xb - self.mean[b]))
return xfill
评论列表
文章目录