def _init_topics_assignement(self):
dim = (self.J, self.J, 2)
alpha_0 = self.alpha_0
# Poisson way
#z = np.array( [poisson(alpha_0, size=dim) for dim in data_dims] )
# Random way
K = self.K_init
z = np.random.randint(0, K, (dim))
if self.likelihood._symmetric:
z[:, :, 0] = np.triu(z[:, :, 0]) + np.triu(z[:, :, 0], 1).T
z[:, :, 1] = np.triu(z[:, :, 1]) + np.triu(z[:, :, 1], 1).T
# LDA way
# improve local optima ?
#theta_j = dirichlet([1, gmma])
#todo ?
return z
评论列表
文章目录