def sample_crp_tablecounts(concentration,customers,colweights):
m = np.zeros_like(customers)
tot = customers.sum()
randseq = np.random.random(tot)
starts = np.empty_like(customers)
starts[0,0] = 0
starts.flat[1:] = np.cumsum(np.ravel(customers)[:customers.size-1])
for (i,j), n in np.ndenumerate(customers):
w = colweights[j]
for k in xrange(n):
m[i,j] += randseq[starts[i,j]+k] \
< (concentration * w) / (k + concentration * w)
return m
### Entropy
评论列表
文章目录