def __init__(self, n_clusters, max_iter=5, metric='euclidean', tolerance=1e-5, init_strategy='kmeans++',
batch_size=0.2, oom_strategy='memmap', fixed_seed=False, stride=None, n_jobs=None, skip=0):
if stride is not None:
raise ValueError("stride is a dummy value in MiniBatch Kmeans")
if batch_size > 1:
raise ValueError("batch_size should be less or equal to 1, but was %s" % batch_size)
self._cluster_centers_iter = None
self._centers_iter_list = []
super(MiniBatchKmeansClustering, self).__init__(n_clusters, max_iter, metric,
tolerance, init_strategy, False,
oom_strategy, stride=stride, n_jobs=n_jobs, skip=skip)
self.set_params(batch_size=batch_size)
评论列表
文章目录