def render_lane(image, corners, ploty, fitx, ):
_, src, dst = perspective_transform(image, corners)
Minv = cv2.getPerspectiveTransform(dst, src)
# Create an image to draw the lines on
warp_zero = np.zeros_like(image[:,:,0]).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts = np.vstack((fitx,ploty)).astype(np.int32).T
# Draw the lane onto the warped blank image
#plt.plot(left_fitx, ploty, color='yellow')
cv2.polylines(color_warp, [pts], False, (0, 255, 0), 10)
#cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (image.shape[1], image.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(image, 1, newwarp, 0.3, 0)
return result
lane_detection_module.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录