def _fit(self, X, y, warm_start=None):
if warm_start is None:
self.coef_ = np.zeros(X.shape[1])
else:
self.coef_ = np.asanyarray(warm_start)
l1l2_proximal = l1l2_regularization
self.coef_, self.niter_ = l1l2_proximal(X, y,
self.mu, self.tau,
beta=self.coef_,
kmax=self.max_iter,
tolerance=self.tol,
return_iterations=True,
adaptive=self.adaptive_step_size)
if self.niter_ == self.max_iter:
warnings.warn('Objective did not converge, you might want'
' to increase the number of iterations')
return self
评论列表
文章目录