classification.py 文件源码

python
阅读 30 收藏 0 点赞 0 评论 0

项目:brainiak 作者: brainiak 项目源码 文件源码
def example_of_aggregating_sim_matrix(raw_data, labels, num_subjects, num_epochs_per_subj):
    # aggregate the kernel matrix to save memory
    svm_clf = svm.SVC(kernel='precomputed', shrinking=False, C=1)
    clf = Classifier(svm_clf, num_processed_voxels=1000, epochs_per_subj=num_epochs_per_subj)
    rearranged_data = raw_data[num_epochs_per_subj:] + raw_data[0:num_epochs_per_subj]
    rearranged_labels = labels[num_epochs_per_subj:] + labels[0:num_epochs_per_subj]
    clf.fit(list(zip(rearranged_data, rearranged_data)), rearranged_labels,
            num_training_samples=num_epochs_per_subj*(num_subjects-1))
    predict = clf.predict()
    print(predict)
    print(clf.decision_function())
    test_labels = labels[0:num_epochs_per_subj]
    incorrect_predict = hamming(predict, np.asanyarray(test_labels)) * num_epochs_per_subj
    logger.info(
        'when aggregating the similarity matrix to save memory, '
        'the accuracy is %d / %d = %.2f' %
        (num_epochs_per_subj-incorrect_predict, num_epochs_per_subj,
         (num_epochs_per_subj-incorrect_predict) * 1.0 / num_epochs_per_subj)
    )
    # when the kernel matrix is computed in portion, the test data is already in
    print(clf.score(None, test_labels))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号