def test_image():
import matplotlib.pyplot as plt
con = config.Config()
data = DataGenerator(con)
xedges = [_ / 7 for _ in range(-14, 15)]
yedges = [_ / 7 for _ in range(-14, 15)]
image_data = {}
for x, y in data.get_train_data(1):
e, v = scipy.linalg.eigh(
x.values.reshape((10, 10))) # np.linalg.eig will return the complex data sometimes...
for i in range(1, len(v)):
new_v = preprocessing.scale(v[i])
for k in range(0, len(new_v), 2):
if k not in image_data:
image_data[k] = {}
image_data[k][0] = [new_v[k]]
image_data[k][1] = [new_v[k + 1]]
else:
image_data[k][0].append(new_v[k])
image_data[k][1].append(new_v[k + 1])
for k in image_data.keys():
H, new_xedges, new_yedges = np.histogram2d(image_data[k][0], image_data[k][1], bins=(xedges, yedges))
print(H)
plt.imshow(H, cmap=plt.cm.gray, interpolation='nearest', origin='low',
extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
plt.show()
评论列表
文章目录