def _beta_cal(self,observations,c_scale):
# Calculate Beta maxtrix
num_states = self.em_prob.shape[0]
total_stages = len(observations)
# Initialize values
ob_ind = self.obs_map[ observations[total_stages-1] ]
beta = np.asmatrix(np.zeros((num_states,total_stages)))
# Handle beta base case
beta[:,total_stages-1] = c_scale[total_stages-1]
# Iteratively calculate beta(t) for all 't'
for curr_t in range(total_stages-1,0,-1):
ob_ind = self.obs_map[observations[curr_t]]
beta[:,curr_t-1] = np.multiply( beta[:,curr_t] , self.em_prob[:,ob_ind] )
beta[:,curr_t-1] = np.dot( self.trans_prob, beta[:,curr_t-1] )
beta[:,curr_t-1] = np.multiply( beta[:,curr_t-1] , c_scale[curr_t -1 ] )
# return the computed beta
return beta
评论列表
文章目录