linear_regression.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:lazyprogrammer 作者: inhwane 项目源码 文件源码
def test():
    # create a bunch of random data for X-axis
    # uniformly generate 2-D vectors in [-50, 50]
    X = 100*np.random.random([NUM_SAMPLES, 2]) - 50

    # create a bunch of random data for Y-axis
    # let's say y = 5x1 - 2x2 + 3 + noise
    # true beta is then: [3, 5, -2]
    Y = np.fromiter((5*x1 - 2*x2 + 3 for x1, x2 in X), np.float, count=NUM_SAMPLES)
    Y += np.random.standard_normal(NUM_SAMPLES)

    # fit
    lr = LinearRegression()
    lr.fit(X,Y)
    print "beta estimated: %s" % lr.beta

    r2 = lr.score(X,Y)
    print "R-square is: %s" % r2

    # predict
    x = (100, 100)
    h = lr.predict(np.array([x]))
    y = 5*x[0] - 2*x[1] + 3
    print "Extrapolated prediction: %.2f\nActual: %.2f" % (h, y)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号