def transform(self, X):
"""
Project the data so as to maximize class separation (large separation
between projected class means and small variance within each class).
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
X_new : array, shape = [n_samples, n_components_found_]
"""
#X = np.asarray(X)
#ts = time.time()
k = self._get_kernel(X, self.X_fit_)
#if self.print_timing: print 'KernelFisher.transform: k took', time.time() - ts
#ts = time.time()
z = np.inner(self.Z, (k-self.K_mean) ).T
#if self.print_timing: print 'KernelFisher.transform: z took', time.time() - ts
return z
评论列表
文章目录