def find_nearest_instance_thread(test_instance_start_index, test_instance_end_index):
print test_instance_start_index, test_instance_end_index
for test_instance_index in range(test_instance_start_index, test_instance_end_index):
# find the nearest training instance with cosine similarity
maximal_cosine_similarity = -1
maximal_cosine_similarity_index = 0
for training_instance, training_instance_index in zip(training_data, range(len(training_data))):
# compute the cosine similarity
# first, compute the inner product
inner_product = np.inner(test_data[test_instance_index][0].reshape(-1), training_instance[0].reshape(-1))
normalized_inner_product = inner_product / test_data_lengths[test_instance_index] / training_data_lengths[training_instance_index]
if normalized_inner_product > maximal_cosine_similarity:
maximal_cosine_similarity = normalized_inner_product
maximal_cosine_similarity_index = training_instance_index
classified_results[test_instance_index] = maximal_cosine_similarity_index
评论列表
文章目录