def _ppcf(self, samples):
if self.theta == 0:
vals = samples[:, 0]
else:
vals = -np.log1p(samples[:, 0] * np.expm1(-self.theta)
/ (np.exp(-self.theta * samples[:, 1])
- samples[:, 0] * np.expm1(-self.theta
* samples[:, 1]))) \
/ self.theta
return vals
评论列表
文章目录