def get_text_lines(self, text_proposals, scores, im_size):
# tp=text proposal
tp_groups=self.group_text_proposals(text_proposals, scores, im_size)
text_lines=np.zeros((len(tp_groups), 8), np.float32)
for index, tp_indices in enumerate(tp_groups):
text_line_boxes=text_proposals[list(tp_indices)]
num = np.size(text_line_boxes)
X = (text_line_boxes[:,0] + text_line_boxes[:,2]) / 2
Y = (text_line_boxes[:,1] + text_line_boxes[:,3]) / 2
z1 = np.polyfit(X,Y,1)
p1 = np.poly1d(z1)
x0=np.min(text_line_boxes[:, 0])
x1=np.max(text_line_boxes[:, 2])
offset=(text_line_boxes[0, 2]-text_line_boxes[0, 0])*0.5
lt_y, rt_y=self.fit_y(text_line_boxes[:, 0], text_line_boxes[:, 1], x0+offset, x1-offset)
lb_y, rb_y=self.fit_y(text_line_boxes[:, 0], text_line_boxes[:, 3], x0+offset, x1-offset)
# the score of a text line is the average score of the scores
# of all text proposals contained in the text line
score=scores[list(tp_indices)].sum()/float(len(tp_indices))
text_lines[index, 0]=x0
text_lines[index, 1]=min(lt_y, rt_y)
text_lines[index, 2]=x1
text_lines[index, 3]=max(lb_y, rb_y)
text_lines[index, 4]=score
text_lines[index, 5]=z1[0]
text_lines[index, 6]=z1[1]
height = np.mean( (text_line_boxes[:,3]-text_line_boxes[:,1]) )
text_lines[index, 7]= height + 2.5
#text_lines=clip_boxes(text_lines, im_size)
return text_lines
评论列表
文章目录