def run_test_c2c_impl(self, shape, axes, inverse=False, fftshift=False):
shape = list(shape)
shape[-1] *= 2 # For complex
known_data = np.random.normal(size=shape).astype(np.float32).view(np.complex64)
idata = bf.ndarray(known_data, space='cuda')
odata = bf.empty_like(idata)
fft = Fft()
fft.init(idata, odata, axes=axes, apply_fftshift=fftshift)
fft.execute(idata, odata, inverse)
if inverse:
if fftshift:
known_data = np.fft.ifftshift(known_data, axes=axes)
# Note: Numpy applies normalization while CUFFT does not
norm = reduce(lambda a, b: a * b, [known_data.shape[d]
for d in axes])
known_result = gold_ifftn(known_data, axes=axes) * norm
else:
known_result = gold_fftn(known_data, axes=axes)
if fftshift:
known_result = np.fft.fftshift(known_result, axes=axes)
x = (np.abs(odata.copy('system') - known_result) / known_result > RTOL).astype(np.int32)
a = odata.copy('system')
b = known_result
compare(odata.copy('system'), known_result)
评论列表
文章目录